
Lehrstuhl für Elektrotechnik – Institut für Technische Informatik

MIRP

Map Information Routing Protocol

for Mobile Ad-Hoc Networks

Diplomarbeit

von

Arndt Oberhöffken

Betreuer: Dipl.-Wirtsch.-Inf. Holger Füßler

Hochschullehrer: Professor Dr.-Ing. Dr.-Ing. E.h. N. Fliege

Professor Dr. W. Effelsberg

Ausgabetermin: 02. Juni 2003

Abgabetermin: 15. April 2004

Unterbrechung: 18 Wochen

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Mannheim, den 15. April 2004 Arndt Oberhöffken

Acknowledgements

I would like to thank Holger Füßler and Mathias Transier for their help

concerning questions about the ns-2 simulator.

Furthermore Dipl.-Inf. Dirk Merettig has my gratitude.

4

Abstract

Development of an algorithm to route packets through a city scenario.

Vehicular nodes in range of junctions gather information about the ’states’

of adjacent streets and so act as superior routing stations.

Previous work indicates that greedy position-based forwarding works very

well in one-dimensional street configurations. Thus an effort is made to

separate the problem into greedy routing to the next junction and the

selection of the street to use. The object of this thesis will be to understand

streets in a city and the vehicles travelling upon them as communication

links between junctions. These links can be considered up or down with

respect whether data packets reach the neighbouring junction.

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Structure . 3

2 Mobile Ad-Hoc Networks 5

2.1 IEEE 802.11 . 5

2.1.1 Physical Layer . 5

2.1.2 Media Access Control 6

2.2 Routing Protocols . 7

2.2.1 Topology-based routing 8

2.2.2 Position-based routing 8

2.2.3 Proactive and reactive approaches 9

2.3 Contention Based Forwarding 10

3 The Map Information Routing Protocol 13

3.0.1 Motivation . 13

3.0.2 Setup . 13

3.0.3 Prerequisite: . 14

3.1 Algorithm . 15

3.1.1 The Junction Slave (0) 16

3.1.2 The Street Node (1) 17

3.1.3 The Junction Master (2) 19

3.1.4 Different Sources of Data Packets 24

i

ii CONTENTS

4 The Network Simulation Environment 27

4.1 ns-2 . 27

4.1.1 Implementation of a new Routing Agent 28

4.1.2 The FleetNet Simulation Files 30

4.1.3 Conversion and Adaption 30

4.1.4 The MIRO Perl Program 36

5 Implementation of MIRP in ns-2 39

5.1 General Operations Director (GOD) 39

5.2 The MIRP Header . 43

5.2.1 Packet Types . 44

5.2.2 Important MIRP Header fields 46

5.3 The MIRP Timers . 48

5.3.1 Data-Dictionary . 51

6 Results 63

6.1 Node placement . 63

6.2 Simulation results . 66

6.2.1 Packet delivery ratio 66

7 Conclusion 71

7.1 Summary . 71

7.2 Future Research . 72

Abbreviations

AODV Ad-Hoc On-Demand Distance Vector Routing

ARP Address Resolution Protocol

CBF Contention Based Forwarding

CCA Clear Channel Assessment

CSMA/CD Carrier Sense Multiple Access with Collision Avoidance

CTS Clear To Send

DCF Distributed Coordination Function

DFIR Diffused Infrared

DSDV Destination-Sequenced Distance-Vector Routing

DSR Dynamic Source Routing

DSSS Direct Sequence Spread Spectrum

FHSS Frequency Hopping Spread Spectrum

GOD General Operations Director

GPS Global Positioning System

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

iii

iv ABBREVIATIONS

GSM Global System for Mobile Communication

HLS Hierarchical Location Service

JRTE Junction Routing Table Entries

LMNM Timer Leaving Master New Master Timer

LSFV Link State Flag Vector

LSRC Timer Link State Refresh Cycle Timer

MANET Mobile Ad-Hoc Networks

MatJTimer Master at Junction Timer

MDB Map Database

MFR Most Forward Within Transmission Range

MID Map ID

MIRP Map Information Routing Protocol

MIRP DATA Standard Data Packet

MIRP LMACK Leaving Master Acknowledge

MIRP LMADV Leaving Master Advertisement

MIRP LMAXP Leaving Master Exchange Packet

MIRP LSREP Link State Reply

MIRP LSREQ Link State Request

MIRP MatJ Master at Junction

MIRP PMRP Present Master Recall Packet

MIRP RADV Receive Advertisement

OMNILOC Omniscient Location Service

ABBREVIATIONS v

PCF Point Coordination Function

PLCP Physical Layer Convergence Protocol

RTS Request To Send

TTL Time To Live

UMTS Universal Mobile Telecommunications System

VANET Vehicular Ad-Hoc Networks

WLAN Wireless Local Area Network

vi ABBREVIATIONS

List of Figures

2.1 Hidden terminal . 6

2.2 Types of routing protocols . 8

2.3 Reuleaux Triangle . 12

3.1 The delayed slave . 16

4.1 Design of a mobile node - taken from CBF by M. Käsemann . 29

4.2 Neukölln . 31

4.3 Complete streetlayout . 31

5.1 ns-2 Header Assembly . 43

5.2 UML-Class diagram . 50

6.1 Visualization of the simulation area 64

6.2 Location of all nodes from file 61 at each of the 60 seconds . . 64

6.3 Location of all nodes from file 61 at t=0 65

6.4 Location of all nodes from file 61 at t=30 66

6.5 Packet delivery ratios . 67

6.6 Sparsely populated link . 67

6.7 Packet delivery for node 225 to 136 68

6.8 PDR data with/without NULL MAC usage 68

6.9 ad-hockey screenshot of grid.tcl layout 70

vii

Chapter 1

Introduction

Today’s technical progress is astounding.

The rise in information and knowledge exchange began in 1876 when Bell

developed the first telephone. Nowadays nearly every teenager has a mobile

phone enabling them to communicate wirelessly with others. The availability

of Wireless Local Area Network (WLAN) adapters in even such small dimen-

sions as the Secure Data (SD) Card slots in state-of-the-art cellular phones

enables the creation of local WLAN in combination with GSM (Global Sys-

tem for Mobile Communication), Bluetooth and UMTS (Universal Mobile

Telecommunications System).

was sind das

Mobile Ad-Hoc Networks (MANET) form an interesting area of reseach

due to their challenge in developing suitable algorithms for the communica-

tion of their participants. An article covering embedding of MANET in the

real world is [14].

Whereas the earlier mentioned cellular networks are based on partly wired

layout in between different base transceiving spelling stations and on the

other hand wireless communication between the cellular phones and these

stations, MANET normally dispense with any wired and fixed parts giving

them great mobility. Thereby they are most valuable in areas where either

infrastructure is missing or an existing infrastructure has been destroyed by

war or natural disaster.

1

2 CHAPTER 1. INTRODUCTION

Because of the range restrictions of wireless transmissions the nodes have

to be able to forward the information. As a result each participant in a

MANET is consumer and distributor at the same time. The nodes can

be both stationary or mobile. Each node has to meet the same routing

standards, and the problem of a constantly changing network must be solved.

MANET could be interesting in any kind of inter-vehicular communi-

cation which leads over to Vehicular Ad-Hoc Networks (VANET) . These

could be propagating automated traffic information as well as street surface

inadequacy warnings or basically any security issue concerning the traffic

following behind, namely the on-board active safety systems. VANET could

even have been a possible solution to the government’s (ministery of trans-

port in Germany in spring 2004) toll collecting projects including some major

representatives of the German industry.

VANET feature certain differences from original MANET, which need

to be explained. The embedding of wireless network devices in automobiles

solved the problem of the limited power supply, which is a drawback of al-

most all mobile devices, in addition VANET are able to marshal relatively

large computational resources. As the vehicles are bound to driving speed

restrictions and usually constrained by roads, VANET constitute high re-

source/performance wireless technology with an extraordinary research chal-

lenge.

1.1 Problem statement

The Department of Computer Science IV at the University of Mannheim is

proud of its developments concerning MANET. One of the research fields

consists in the FleetNet Project which deals with VANET [4, 5]. Position-

based routing algorithms for VANET are especially interesting as they form a

different approach to packet routing than the existing topology-based routing

algorithms. Due to the availability of GPS (Global Positioning System)[1] in

modern vehicles positional information1 can be easily acquired and compared

1concerning the own position

1.2. STRUCTURE 3

with the cartographic information from a navigation system . This offers

interesting possibilities for research in intervehicular city scenarios.

Beside many of its aspects the theme of this thesis is focused on an algo-

rithm for city scenarios. City scenarios are of special interest beacuse of the

difficulties of buildings interfering with the radio transmissions as well as the

possibilities to use certain specific and characteristic information. Valuable

attributes can be for example a higher node density than in rural areas and

an accumulation of nodes in junction areas with a possible delay, either to

give right of passage or because of traffic lights. Other reasons like train

or river crossings or as in New York toll checkpoints are rather specific. A

Routing Strategy for Vehicular Ad Hoc Networks in City Environments [10]

has been developed by the Department of Computer Science IV which mod-

els obstacles into the ns-2 simulations to account for the stated transmission

restrictions in city environments. Still a better usage of the provided infor-

mation could be emphasised. A street to link abstraction is therefore the

main task of this thesis. The idea is that nodes residing in the junction areas

acquire information about the link states of the adjacent streets. The street

links are classified in up or down states, referring to a response of the junc-

tion at the other side of the street link. An algorithm will be presented to

meet these objectives.

1.2 Structure

Whereas Mobile Ad-Hoc Network basics have been covered and explained in

the main part of the second chapter, the end of the second chapter describes

the Contention-Based-Forwarding protocol which is a fundament of this work.

The third chapter gives a general overview of the MIRP algorithm on the

basis of the defined possible node states. While the fourth chapter introduces

the ns-2 network simulation environment and describes the assembly of the

required input files, the fifth chapter deals with the implemented algorithm in

detail introducing a UML diagram overview and an explicit data dictionary

for virtually every used routine. The sixth chapter presents the results, partly

on basis of the FleetNet simulation data, mostly on the network simulation.

4 CHAPTER 1. INTRODUCTION

The thesis concludes with an outlook and some prospectus.

Chapter 2

Mobile Ad-Hoc Networks

2.1 IEEE 802.11

2.1.1 Physical Layer

The IEEE 802.11 standard supports three different types of physical layer

management. These are:

• FHSS - Frequency Hopping Spread Spectrum

• DSSS - Direct Sequence Spread Spectrum

• DFIR - Diffused Infrared

The most common of these, DSSS, uses the 2.4 GHz frequency wave spectrum

and signals the occupancy of the medium by the Clear Channel Assessment

signal CCA. If a receiving node can not deduce the allocation of the medium

despite being in range, a problem called ”hidden terminal” [2] arises. The

detection is then prevented by a signal collision of at least one other sending

node (outside the radio range of the first - as it would have sensed the un-

availability of the medium, if not affected by a hidden terminal appearance

itself). For this purpose the Physical Layer Convergence Protocol (PLCP)

adds a preamble (144 bit) and header (48 bit) to all outgoing packets result-

ing in a constant delay for all transmissions. Node A cannot sense that node

C is transmitting information to node B as it is outside the radio range of C

5

6 CHAPTER 2. MOBILE AD-HOC NETWORKS

Figure 2.1: Hidden terminal

(as indicated by the circle surrounding C as centre). A therefore may start

sending packets which results in a packet collision at B, which, indicated by

the interconnection of the circles, is in the intersection of both transmission

ranges. Here C is a hidden terminal for A and vice versa.

Because of the limitations of air as the medium the handling of packets

and amount of redundancy added is a difficult tradeoff. Too much redun-

dancy results in less amount of data transmitted, whereas too few in form

of recovery information could result in severe data loss since the medium is

prone to collisions resulting in packet drops or losses.

2.1.2 Media Access Control

Of the two basic medium access mechanisms the MAC layer provides, the

Point Coordination Function (PCF) is unconvertible in MANET owing to

their infrastructural nature which is conflictive with the very idea of MANET.

The second, the Distributed Coordination Function (DCF), consists of two

schemes, basic CSMA/CA - Carrier Sense Multiple Access with Collision

Avoidance - and extended CSMA/CA with Request To Send (RTS) and

2.2. ROUTING PROTOCOLS 7

Clear To Send (CTS) as a handover policy. DCF introduces priority based

medium access in combination with contention to avoid packet collision. The

main idea, a contention method, is of special interest as it is one of the major

concepts for packet propagation in the MIRP algorithm. In basic CSMA/CA

ordinary packets (with no priority) listen for a free medium. When this idle

state is detected, the rivalling nodes enter contention phase. They each

generate a random delay and wait for its expiration. The first node with an

expired timer wins the contest and suppresses the other nodes by starting to

send. These are hereby informed and keep their remaining timer duration for

the next contention period. This keeping of the unexpired timer rudiment

results in a fair sharing of the medium. The longer the node waits for a

successful possibility to send, the shorter is its remaining timer, which results

in a higher probability to be the next contention winner.

In the extended CSMA/CA version with RTS/CTS packets a handover

is realized to avoid the hidden node problem. The procedure is quite simple:

The sending node initiates the transmission with a small RTS packet which

contains information about the data transfer it wants to perform. Included

in the packet are the receiving nodes ID, the amount it wants to transmit

as well as the probable duration of the transfer including the request, data

and ACK. It is read by the destination node as well as by all the others in

radio range. The destination node then prepares a CTS return packet also

including the duration of the transfer and this packet is heard by possible

interfering nodes on the opposite side of the sender, which would not be

suppressed by the request packet and could not detect the sending of the

source. This CTS packet initiates the transfer and additionally hampers

possible other senders in range of the destination for the given time period.

2.2 Routing Protocols

The existing protocols for MANET can be generally partitioned into two

classes: Topology-based and position-based routing protocols.

8 CHAPTER 2. MOBILE AD-HOC NETWORKS

Figure 2.2: Types of routing protocols

2.2.1 Topology-based routing

Topology-based protocols make their routing decisions on the logical layout

of the surrounding network. Their routing algorithms are akin to the wired

routing protocols with the extra accounting for randomly changing routes

in the wireless scenario. Topology-based protocols thus perform a two step

approach: At first the composition of the route to the destination and then

the transmission of the data to the destination via this route.

2.2.2 Position-based routing

The availability of cheap GPS (Global Positioning System)[1] receivers paved

the way for position-based protocols. These use a totally different approach.

Their routing decisions are calculated on the geographical information of the

destination node. The routes taken are dependent on the last hop position

as well as on the coordinates of the next forwarding node. Each packet sent

off needs to find its own way to the destination. To know the position of the

destination a service is needed. In unicast networks this is achieved via a

location service. Hierarchical Location Service (HLS)[9] and Homezone are

two representatives.

2.2. ROUTING PROTOCOLS 9

2.2.3 Proactive and reactive approaches

Proactive and reactive approaches exist in these two protocol classes. Proac-

tive would mean preventative tracing of routes and their upkeep, reactive acts

on demand only. Obviously the proactive concept is very resource consuming

and dealing with only the air as a very limited medium reactive handling is

the more promising concept.

Examples

A well known topology-based proactive protocol is Destination-Sequenced

Distance-Vector Routing (DSDV)[11]. It maintains routing tables with all

available paths in the network. As these paths are represented by wire-

lessly linked moving nodes the topology is due to change permanently. The

result is a constant bandwidth usage to update the routing table. Repre-

sentatives of a reactive approach are Ad-Hoc On-Demand Distance Vector

Routing (AODV)[12] and Dynamic Source Routing (DSR)[13]. After an ini-

tial discovery phase only active routes are stored and every reconnect of an

expired route needs to trigger a rediscovery.

Greedy Perimeter Stateless Routing (GPSR)[7] on the other hand is a

popular position based routing protocol. Greedy routing refers to the ’Most

Forward Within Transmission Range’ (MFR) heuristic, the effort to make

the most progress towards the destination, i.e. taking huge steps towards it.

In GPSR the sending node decides which node has made the most progress.

To be able to do so, each node has to know the positions of the nodes in ra-

dio range, the neighbouring nodes. This information is exchanged via special

beacon packets which carry information like ID (IP-address) and position

of the sender and in some cases even advanced information like speed and

driving direction to enable a better choice for the suitable next hop. As an

alternative to permanent beacon packet exchange nodes could use their net-

work interfaces promiscuously, listening to all passing packets, which enables

piggybacked beaconing. Thus no more beacons have to be spread but instead

every data packet carries the position of its source as additional information.

The drawback is the extra payload for every data packet sent off.

10 CHAPTER 2. MOBILE AD-HOC NETWORKS

But greedy forwarding bears some problems with local minima (areas

where no greedy node closer to the destination exists). A possible solution to

cope with minima is the right hand rule. The area of the minimum represents

a wall and - similar to a human in a simple labyrinth, who touches the

wall with his right hand and moves on - the packets move around the area

till eventually reaching a position being closer to the destination than the

minimum. To perform this, a planarisation of the graph of routes needs to

be calculated. Once moved around the area, greedy routing can be applied

again.

A different concept represents Contention Based Forwarding (CBF)[6, 3,

8], which has been developed at the Chair of Computer Science IV at the

University of Mannheim. Its basic version is used as basis for MIRP and will

therefore be presented in more detail.

2.3 Contention Based Forwarding

The CBF protocol, as a position-based routing protocol, renounces the bea-

con exchange by assigning the task of selecting the next hop to the possible

forwarders. The sending node broadcasts the packet. Hearing it the neigh-

bouring nodes calculate their suitability to be the next hop. Their progress

towards the packet destination is transformed into a specific delay for this

packet on the basis of the formula:

tbackoff (p) = T · (1− p) pε[0, 1],

where p denotes the forwarding progress and T is the maximum forwarding

delay. The progress is calculated from:

F (x) = F (~n) =

‖~d−~s ‖−‖~d−~n ‖

r
if ‖~d− ~s‖ ≥ ‖~d− ~n‖

0 else,

where ~d is the position of the destination node, ~s is the position of the

forwarding node, ~n is the position of the neighbour node and r is the radio

range. As negative delays are impossible in the simulation environment the

2.3. CONTENTION BASED FORWARDING 11

special case ‖~d − ~s ‖ − ‖~d − ~n ‖ > r ⇒ p = 1 (which can only happen in

the simulation) is needed. All contestants activate a timer for the packet ID.

The node with the best progress has the shortest delay and thus forwards

the packet first. This forwarded packet is then recognised by the competitors

as a signal of successful relay and they all cancel their pending timers and

discard their version of the packet.

CBF, as a greedy forwarding algorithm, contains a fallback strategy in

case of a found local minimum for greedy packet forwarding. The mode is

switched, and the earlier mentioned right hand rule strategy is used to find

a new forwarding node, closer to the destination then the excluded node, as

a result of the local minimum. Basic CBF is affected by packet duplication

and packet collision due to the spread of its packets. Hidden terminal is only

a special form which can appear. Straighter forward is simply the fact that

two possible contenders for a packet from the same source are just outside

the range to receive transmissions from each other. They have no means

to detect the forwarding of their pending packet owing to a simple range

problem. The consequence is a duplicate packet and could even result in a

collision at the location of a sole next hop in range of both contestants.

Hence CBF also offers more advanced features for packet forwarding. A

Reuleaux Triangle is used for a more restrictive forwarding strategy. Only

forwarding contenders localized in this special Reuleaux area are allowed to

forward the packet. The triangle is drawn from the source node in direction

towards the destination. If no candidate is found, the packet is retransmitted

with a 60◦ rotated area to find a contender. If still no node is detected the

next retransmission rotates the area -60◦ from the original position. This

sequence is repeated till the packet expires or a forwarding node is found. The

dimension of these Reuleaux Triangles ensures that all possible competitors

are in radio range to each other and therefore packet duplication (with just

one sender) is avoided.

12 CHAPTER 2. MOBILE AD-HOC NETWORKS

Sender

Reuleaux Triangle

Figure 2.3: Reuleaux Triangle

Chapter 3

The Map Information Routing

Protocol

3.0.1 Motivation

Another challenge to position based routing lies in the area of city envi-

ronments. These scenarios harbour the difficulty with buildings or other

obstacles disabling the communication in between different streets, as they

are impenetrable by radio transmission. Even worse, the reflections on most

surfaces add extra noise to the existing transmissions with a disturbing delay.

On the other hand city layouts are, looked at from bird’s eye view, a multi

meshed network of connecting streets. This induces an interesting thought:

Why not use streets as links and junctions as hubs, collecting linkstates and

doing a routing akin to wired routing?

This is precisely the main idea of MIRP.

3.0.2 Setup

Now a modelling environment is needed to set up a simulation. The ns-2

network simulator originates from the ns simulator which started in 1989 as

a variant of the REAL network simulator. Its origins base on wired network

13

14 CHAPTER 3. THE MAP INFORMATION ROUTING PROTOCOL

simulations which over the years, and the project becoming more and more

popular, evolved into ns-2, a discret event simulator for network research

and development. In 1998 wireless networking support was integrated by the

Monarch Group at the Carnegie Mellon University. The sources are publicly

available and consist of C++ for the core engine and OTcl as frontend. For

the development of the MIRP routing algorithm version 2.1b8a of the ns-2

network simulator was used, including many modifications over the past

years in the context of the FleetNet project in cooperation with the network

laboratories of NEC. Results produced by the ns-2 simulator should not only

be considered from the qualitative point of view. Real-world tests with Smart

cars equipped with wireless network devices and GPS have been undertaken

by DaimlerChrysler in Ulm to some extend. DaimlerChrysler has also gath-

ered streetscenario data with a flow of traffic simulator named Videlio which

will be a basis for the simulations and will be mentioned in detail later on.

3.0.3 Prerequisite:

• a routing agent has to be implemented in ns-2

• a close-to-reality street scenario file for ns-2

• a close-to-reality implementation of node (car) movement

• a randomised communication pattern file

3.1. ALGORITHM 15

3.1 Algorithm

All participating nodes imbibe one of three definite states, depending on their

location:

• 0 = junction-node slave

• 1 = street-node

• 2 = junction-node master

A node is considered to be member of the junction if its distance drops

below a certain value. This value is directly accountable for the amount

of nodes considered to belong to a junction. A junction may only have a

single master node at the same time. All other nodes in range are set to

slave mode. Every master queries the state of his adjacent links (streets)

to learn about its status. This query is a special link state packet destined

for the junction on the other side of the street. A link is considered up or

working if a link state reply packet from the queried junction is returned,

bearing the same packet ID as the query. Since MIRP is based on the CBF

concept it is designed to enable packet forwarding without any non-local

information with the exception of the master nodes residing at the junctions.

All forwarding packets are broadcasts and analysed by all nodes in radio

range with the exceptional case of the junction database exchange packet,

which is transmitted as unicast to the receiving slave.

MIRP uses greedy forwarding with contention in between junctions. The

problem of running into a local minimum does not exist since all packets

are bound to a certain street and the radio range is always greater than the

street width. It is possible that no further forwarding node for a street is

available. In that case the link is broken. The master node administers a

junction database in which it stores information about the link states. Based

on this database a suitable next junction is chosen for each data packet.

16 CHAPTER 3. THE MAP INFORMATION ROUTING PROTOCOL

M = master

D = slave

S = sender

junction range

S

D

M

Figure 3.1: The delayed slave

3.1.1 The Junction Slave (0)

All nodes sojourning in the range of a junction are considered slaves. They

are not directly taking part in any relaying of packets except when originating

data packets (CBR) themselves .

• As a minor functionality slave nodes participate in the contention for

packets destined for their junction, but with a small extra increase

in the contention timer value to eliminate the possibility of swooping

packets from the master, if their distance to the sender results in a

minimum timer delay. This antagonises the possibility of a packet loss

for the junction if the master is either just outside of the radio range

the slave node might still reside in or could not receive the packet due

to a packet collision his slave was not affected by. The figure 3.1 shows

an example: The master hears the packet, even if he is beyond radio

range limits due to a good transmission. The junction slave (D) would

3.1. ALGORITHM 17

calculate his delay to be 0 as he is in optimum range. The result is a

renewed delay

d =
rj · 2
rrr

d = delay, rj = junctionradius, rrr = radiorange

• All arriving nodes at the junction are operating in slave mode. They

wind up a timer during which period they are listening for a mas-

ter being present at their junction. If a master is recognized, the

timer is rescheduled using a fixed increment and a variable part (this

could be derived from the nodes sojourn time). Otherwise the node as-

sumes that no master is present and broadcasts a master-at-junction-

advertisement-packet to inform all other slaves at this junction of the

now existing master. The other slave nodes thereupon reschedule their

timer and resume in waiting and contending slave state.

• Another task of the present slaves is listening for an advertisement

of a master leaving their junction. Upon reception the slave nodes

then apply to become the new master. To contest they activate an-

other timer (LMNM) with a value corresponding to their sojourn time

d =
tcurrent − tentry

100
. The node with the smallest timer value wins the

contention and answers with the broadcast of an acknowledge packet

destined for the junction it resides in. This ACK packet causes all

other slaves to be suppressed, resulting in a cancellation of their pend-

ing timers and the master knowing his successor. The master database

is now exchanged in unicast mode and the old master is a street member

again.

3.1.2 The Street Node (1)

All nodes outside the junction perimeters are street nodes. These nodes

employ with standard CBF mechanisms with the sole extension of discarding

any packets that are off link, i.e. packets which are not destined for the

street they are received on. The procedure upon arrival of a packet runs as

18 CHAPTER 3. THE MAP INFORMATION ROUTING PROTOCOL

follows: (viewpoint of the deciding street node)

• ensure that the packet is for my link

• check if a timer for this packet ID is running. If it is, then another node

(a competitor) won the contention and this packet and the pending

one (same ID) can be dropped, as this packet is from the winner of the

contention. It’s the next forwarding action.

• if no timer is pending, then calculate the distances from myself to the

destination, from the last hop to the destination and from myself to

the last hop (in a close-to-reality scenario it is virtually impossible that

two distances are equal)

– if my distance to the destination is greater than the distance of

the last hop towards the destination, then I am an unsuitable

forwarder and should ignore (drop) the packet

– if my distance to the destination is smaller than the distance of

the last hop node towards it and my distance from the last hop

is inside the radio range, then I am a suitable contender and my

progress is weighted, forming my timer delay

– depending on the handling rules of the algorithm the nodes whose

distance is huge enough to be outside radio transmission1 either

take part in the contention taking the risk that their relay does

not reach the predecessor leaving him uninformed of the successful

transmission or this distance results in the packet being dropped

by the node deeming itself as an inappropriate contender

• as each data packet can have its very own one hop retry counter - if

the retry timer has triggered, decrement the retries, drop the packet if

it was the last chance or else measure the progress again and perform

the appropriate action

1there is no really fixed length for the distance the signal can travel and the range
fluctuates

3.1. ALGORITHM 19

3.1.3 The Junction Master (2)

In a normal traffic scenario with a decent number of participating nodes,

the junction master state is the rarest. These nodes are the backbone of

the network, they make the decisions about the larger scale routing. The

master nodes bear the information about the surrounding neighbourhood of

junctions. Because of the complexity of operations to perform, these nodes

use a variety of different packets to exert influence and direct the processes

in their immediate surrounding. Virtually all packet types have just one hop

as their propagation range. Only data packets and link state information

packets travel further (to the next junction or explicit destination).

A subdivision might be useful to explain the functionality :

• Close range packet types manage procedures with the surrounding

slaves

• Junction to junction link state packet types gather information from

the neighbouring masters abiding in their junctions

• Data packets travel from master to master till they approach a distance

of one junction to their destined destination

Close Range Packets

This group can be subdivided in two categories:

• Junction Advertisement Packets

These packets are broadcasts originated by the current junction master

to inform all possible slaves at the junction of its presence. They are

small packets broadcasted when either a slave just became master or

when a certain amount of time has passed after the last transmission of

a packet, which would reveal the master’s presence at this node. This

task could as well be handled by a link state request packet, but every

link state request packet could entail a quite expensive (in terms of

20 CHAPTER 3. THE MAP INFORMATION ROUTING PROTOCOL

bandwidth usage due to the size of the packet header including numer-

ous link state information from the queried junction) link state reply

by the answering node. Link state requests have a special routine to

its propagation cycle, which will be professed in detail later. The rep-

etition cycle of the junction advertisement packet ought to be shorter

than the linkstate cycle. The danger of consuming too much bandwidth

with its propagation is unsubstantiated as the packet is only deployed

when no other type of packet that is capable of revealing the master’s

presence is dispatched. This means that, if no data packet, link state

request or link state reply packet is conveyed by the master, there is

not really much traffic at all, so triggering a junction advertisement

packet doesn’t do any harm.

But what is the reason for the need of a small delay for this kind of

packet? Any time a slave receives a junction advertisement packet the

special timer for this event is rescheduled again. If this timer expires

the slave deems itself next qualified master and broadcasts a junction

advertisement packet itself. Thus a small delay results in a quick seizure

of the junction as master by a slave. This is of particular importance

in junctions with less through traffic, which results in only a few nodes

sojourning overall. A long wait to recognize that no master is present

until the seizure is unwanted, since no effective packet forwarding can

take place.

A junction takeover even though a valid master is present may happen

if a slave could not evaluate the junction advertisement or any other

awareness packet as a result of a packet collision. In this particular

case the original master becomes a slave again. A quick unicast packet

exchange requesting the timestamp of the promotion and a resulting

agreement on a future master could be contemplated.

I have recently tried to put this thought to practice and had to realize

that this unawareness of a present master by a slave is a major prob-

lem if a huge radio range (500m) is used which spans over to another

junction. Simply triggering a unicast packet exchanging the age since

is has become master (which would result in the old master winning) is

3.1. ALGORITHM 21

not as easy, because the new pert slave (now master) is quite busy with

junction advertisement, and link state packets and will most probably

not hear the first request to exchange age information. A way has to be

found that not every of these awareness packets from the new master

trigger a new request for age comparison. In an awkward case even

more than one slave seize the master’s throne, resulting in even more

packet collisions and difficulties solving the situation. As a possible so-

lution a close range packet has been introduced carrying the master’s

timestamp2 in the packet’s timestamp field. The receiving other master

(a possible pert slave) compares the timestamps and subdues into slave

status, if his timestamp is newer. If his timestamp is of older status a

return packet delivers his master timestamp. (It still needs to be dis-

cussed if this packet should be send unicast, as it is at the moment, or

as a broadcast. The advantage of a broadcast is that all possible masters

are questioned, the drawback is a needed partitioning for the answer if

many masters are older.)

• Leaving Master Packets

This group of packets all involve the order of events if a master should

leave the junction. They are occurring in the following order:

1. A master detects that he left the junction perimeter and has a

junction database to hand over back to the junction. The node

hence broadcasts a leaving-master-advertisement packet destined

for the junction (the exact strategy concerning packet fields and

target handling will be discussed subsequently) and waits for the

resulting contention winner (a slave at the targeted junction) to

answer.

2. This answer packet is the only explicit close-range packet a slave

may propagate. The leaving-master-acknowledge packet is a

broadcast again to inform all other contending slaves of the ceased

contest, which thereupon cancel their pending timers.

2timestamp of becoming master at this junction

22 CHAPTER 3. THE MAP INFORMATION ROUTING PROTOCOL

3. In the last step the master now knows the new master of the junc-

tion he just left and transmits a unicast leaving-master-exchange

packet to the ID of the promoted node containing all collected

link state information including the unchanged timestamps of the

entries.

After the transfer the old master deletes his database as his last of-

ficial act (his affiliation has been of street node kind already after the

transgression of the junction boundaries)

Link State Packets

MIRP uses two kinds of link state packets, one to query and one for the reply.

The request packet is straightforward and consists of the street ID and the

destination ID (of the junction) of the target. The creation of both kinds of

link state packets is solely in the master’s responsibility. The creator’s ID is

not stored in the MIRP packet header, only the source ID with respect to the

junction ID. This way the reply packet can still be used, even if the master

at the junction changes till the reply arrives. Once instantiated the packet

travels along the street it was destined for. It propagates via the street CBF

protocol in greedy progress until it is evaluated at the destination junction.

This junction then generates a one-hop database entry for the successful link

and creates a link state reply packet. This packet contains the gathered

database entries of this node up to n hops. It also stores the corresponding

timestamps with the entries and returns the packet with the same MIRP

header packet ID as the query. The broadcast of the link state packet also

causes the master node to reschedule its advertisement timer, as this packet

bears the junction ID as source in the MIRP packet header making the master

known to all surrounding slaves, which on their part reschedule the timer.

The link state reply packet now finds its way back to the junction on the

same way the link state request came from. Upon arrival the retry timer

for the link state request is rescheduled and the one hop link state entry is

updated in the database with the new timestamp. For the database entries

of the neighbouring junction the following procedure is run:

3.1. ALGORITHM 23

• Find a matching entry for the destination

– if no entry is found, add the entry to the database keeping the

timestamp

– if a match is found and the timestamp of the existing entry is

newer than the received one, ignore the entry

• If the timestamp of the received matching entry is newer and the path

length is longer than the existing path length replace the entry only if

the existing entry is invalid due to expiration

• If the matching entry is newer and shorter or of same length replace

the old entry

Received Data Packets

There are two slightly different kinds of received data packets: Packets which

have been handled by a master before and packets which have previously not

reached a master node.

• Data packets first arriving at a master node have no valid ID in the

last junction ID field. Therefore the master checks other header fields

which might help him in his forwarding decision. If the source is a street

node, the master remembers not to route the packet back on the link it

came from, because either the junction is closer to the destination, in

which case the street node made the right decision, or the junction is

further away than the source, then this packet was a last chance packet

and could not be delivered up the other end of the street anyway. Now

the master searches its database for the junction entry being closest to

the destination. The path towards this junction is embedded into the

MIRP header and the last junction ID field is set to the value of the

junction the master abides in.

• As recently described, data packets from another junction have a valid

MIRP header field for the source junction containing the junction ID

they came from. This information is now used to update the junction

24 CHAPTER 3. THE MAP INFORMATION ROUTING PROTOCOL

database with the one-hop entry referring to the last junction. Then the

rest of the header fields are inspected and depending on the algorithm

setup either an existing suggested next path is extracted from the MIRP

header field, the last junction ID updated and the packet forwarded

again, or otherwise a new search for a destination junction is initiated.

3.1.4 Different Sources of Data Packets

Every node in the scenario can originate data packets while only the master

nodes have a superior knowledge of the network. Therefore, if a non-master

node generates data packets it needs to come to a decision concerning the

routing. A simple flooding till the packet reaches the first master would be

easiest but inefficient. Routing the fresh data packets to all neighbouring

junctions using CBF was pondered on but rejected. Because the generation

of data packets has not yet been discussed, let’s take a closer look at the

handling in general:

Street Node

Suppose the node is a street node. It knows (via the Omniscient Location

Service (OMNILOC) - by asking the General Operations Director (GOD), a

uniquely running ns-2 object) the position of the destination. Since it has

no database about link states it can only use its knowledge of the map. The

node therefore calculates the distances between the two ends of the street it

is currently on using the junction coordinates and simply picks the one closer

to the destination as next hop with respect to junctions. As the probability

of a street node originating data packets in a evenly distributed scenario is

higher for the very reason that most of the nodes will be street nodes, a

street node as source of data packets is very likely. Regrettably this is the

situation where the packets have their most perilous forthcoming apart from

the street needed to be taken to reach the destination, as only these two

streets are certain. For all the other possible dead-link situations in between,

the master junctions could be prepared. Nevertheless the street node made a

decision and the packet was sent off. To give some more safety to the delivery

3.1. ALGORITHM 25

the packet’s next-hop junction is rerouted to the other connected junction

if the packet has its last retry. Possibly nodes exist in this direction which

dropped earlier transmissions due to misfit and can now relay the packet to

the opposite junction.

Slave Node

In case the node is a slave node at a junction it simply hands the packet over

to the master. It could use the same approach as the street node, but on the

one hand the junction has probably more connected other junctions to pick

from than the two possibilities of the street. On the other hand why should

the probably better knowledge of the topology of the master in just one hop

range be ignored?

Master Node

The most improbable case is the master node itself originating data packets.

After acquiring the destination’s positional information the master searches

its database for the junction ID closest to these coordinates and stores the

path to the chosen junction as well as his junction ID in the MIRP header’s

corresponding fields. All in all this routine is virtually identical to a master’s

action when receiving a data packet which has never been handled by a

master before.

Selected Packet Header Fields

pmi Packet map information field carries the street ID and is used by the

street nodes in comparison with their MID (Map ID).

pmdst Packet map destination is the next junction ID the packet should

reach

pmsrc Packet map source is the last junction ID the packet came from

src/dst/last Header fields all of type node posinfo carrying information

about the nodes on the packet’s way

26 CHAPTER 3. THE MAP INFORMATION ROUTING PROTOCOL

Chapter 4

The Network Simulation

Environment

4.1 ns-2

As mentioned earlier the network simulator ns-2 is taken for simulation pur-

poses. The simulator is deduced from the ISO/OSI model. It works on

packet level basis, i.e. it creates an object for each packet that is simulated

making it ill suited for large scale simulations but very accurate for smaller

simulation layouts. Several tutorials exist to guide a novice into the complex

structure of ns-2. Two to mention are Marc Greiss’ tutorial, an excellent

entry into the matter, as well as ”NS by Example” by Jae Chung and Mark

Claypool.

The ns-2 manual is a useful description for the main functionalities of the

simulator. Especially the inner structure of the mobile node with its in-

terconnecting agents, multiplexer and where appropriate demultiplexer is

explained.

27

28 CHAPTER 4. THE NETWORK SIMULATION ENVIRONMENT

The figure 4.1 shows the schematic of the inner structure of a mobile

node. As all wireless networks share the air as their common medium, the

Address Resolution Protocol (ARP) as a part of the mobile node in the ns-2

simulation is deactivated, because MIRP is based on broadcasts, as CBF is,

too.

(ARP is used to acquire the MAC addresses of comunication partners.)

To set up a routing agent several steps have to be accomplished.

4.1.1 Implementation of a new Routing Agent

First of all ns-2 has to be made aware of the new agent. One of the files

that need to be changed is the cmu-trace.cc file. This file is responsible

for the output of the simulation, the trace file. Its general structure as well

as certain output formats are specified here. The programmer may define

which information, i.e. in which format, has to be written to the tracefile.

The needed changes are:

• An inclusion of the header file of the new agent, to make the datas-

tructures for the protocol known.

• CMUTrace::format: In this method the call to the tracing function is

made on the basis of the packet type ch->ptype()

• In the switch statement an entry needs to be created to call the new

tracing function for the agent

The packet.h file needs to be edited in the following way:

• In enum packet_t a "PT_protocol tag" has to be added, PT_NTYPE has

to remain the tail entry

• The p_info class must be extended by name_[PT_MIRP]= "protocol

tag";

The next file that needs adjustment is ns-packet.tcl. It can be found in the

/tcl/lib directory. The protocol tag needs to be added to the foreach prot

loop. To be able to trace the involved packet types in a MAC collision,

4.1. NS-2 29

Figure 4.1: Design of a mobile node - taken from CBF by M. Käsemann

30 CHAPTER 4. THE NETWORK SIMULATION ENVIRONMENT

mac-802_11.cc has to be edited in the MAC_VERBOSE section according to

the existing entries. To configure ns-2 with the new agent, Makefile.in has

to be extended with the new agent files.

The main control file for ns-2 is the run.tcl file. It provides access to the

main simulation variables. To set up a simulation input files consisting of the

participating nodes, including their position, their communication patterns

and to account for mobile ad-hoc networks their movement patterns have to

be generated. For better analysis of the algorithm a simple test environment

is useful.

4.1.2 The FleetNet Simulation Files

For a promising analysis of a routing agent designed for city scenarios some

criteria have to be met. Apart from a suitable scenario layout, referring

to the streets where the vehicular nodes travel upon, and a close-to-reality

movement of these nodes, it is important to account for possible transmission

interferences. The MIRP algorithm ensures that only packets belonging to

the street the node is currently moving on are processed by the node. Con-

cerning the scenario layout a district of Berlin, the capital of Germany, has

been chosen. The map shows the part of Berlin-Neukölln which was used

as a basis for the simulation survey. Only streets with a decent traffic flow

have been extracted and processed by the traffic flow simulator Videlio at the

DaimlerChrysler AG. The resulting data represent the raw node movement

data for my simulations. These files had to be edited and processed further to

be compatible with the ns-2 simulation environment, which will be explained

in the following section. More information about the origin of the simulator

data can be obtained from the diploma thesis of Christian Lochert[10], who

acquired these scenario data for his own thesis.

4.1.3 Conversion and Adaption

Of the different simulation files 3 types were processed:

• A numeration of all lanes. A lane is one direction of travel.

4.1. NS-2 31

Figure 4.2: Neukölln

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000

Figure 4.3: Complete streetlayout

32 CHAPTER 4. THE NETWORK SIMULATION ENVIRONMENT

ID = 1 lane ID

VMAX = 13.888889 speed limit for the lane

KNOTEN = 1 4 connected junction IDs

ANZSP = 3 number of tracs

LAENGE = 105.000000 length of the lane

ZEIT = 7 unused

AWINKEL = 113 unused

EWINKEL = 113 unused

KLASSE = 1 unused

ENDEKANTE = Kante 1 Lane x end tag

Variables titled unused are of no particular interest but shown

for completeness.

• A collection of node (vehicle) movement files numbered from 61-240

and representing the timeslot from 4 o’clock PM to 6 o’clock PM. As

an example a short extraction is given to illustrate.

Fleetnet-Simulation 16: 0: 0 bis 16: 0:59

DaimlerChrysler AG 2002

Uhrzeit Fzg-ID K-ID X-Koordinate Y-Koordinate V[km/h]

16: 0: 0 16913 122 13.42710 52.48924 10.0

16: 0: 0 16239 122 13.42562 52.48968 50.0

16: 0: 0 16945 128 13.42610 52.48965 50.0

16: 0: 0 17426 128 13.42507 52.48993 50.0

16: 0: 1 16913 122 13.42701 52.48927 28.0

Time Veh-ID K-ID x coordinate y coordinate velocity

• A listing of all junctions in the simulation

4.1. NS-2 33

ID = 1 ID of the junction

XKOORD = 13457.200000 x coordinate

YKOORD = 52445.900000 y coordinate

TYP = RVL right of way type: right before left

ANFKANT = 1: 1 number of starting lanes and ID

ENDKANT = 1: 4 number of ending lanes and ID

VORFAHRT = 1 : 0 unused

ABBIEG = 1 : 13 unused

EINBIEG = 1 : 13 unused

ENDE = Knoten 1 ID end tag

ID = 4 ID of the junction

XKOORD = 13456.700000 x coordinate

YKOORD = 52446.800000 y coordinate

TYP = LSA right of way type: traffic lights

LSANR = 1 number of traffic lights

ANFKANT = 4: 4 5 6 7 number of starting lanes and ID

ENDKANT = 4: 1 2 9 21 number of ending lanes and ID

VORFAHRT = 1 : 0 0 0 0 unused

VORFAHRT = 2 : 0 0 0 0 unused

VORFAHRT = 3 : 0 0 0 0 unused

VORFAHRT = 4 : 0 0 0 0 unused

ABBIEG = 1 : 33 11 33 12 unused

ABBIEG = 2 : 11 11 11 11 unused

ABBIEG = 3 : 11 22 22 22 unused

ABBIEG = 4 : 23 44 11 44 unused

EINBIEG = 1 : 33 11 22 12 unused

EINBIEG = 2 : 33 11 22 11 unused

EINBIEG = 3 : 11 11 22 22 unused

EINBIEG = 4 : 12 11 11 22 unused

AMPEL = 1 : 3 3 3 3 unused

AMPEL = 2 : 2 2 2 2 unused

AMPEL = 3 : 4 4 4 4 unused

AMPEL = 4 : 1 1 1 1 unused

ENDE = Knoten 4 Junction x end tag

34 CHAPTER 4. THE NETWORK SIMULATION ENVIRONMENT

Every FleetNet simulation file contains the node movements for a period

of 60 seconds.

The first task was to find a suitable way to create streets out of the

discrete lanes. An easy way of transformation would be to marry the lane

IDs with a certain offset, this was done using perl. But albeit the data at

hand does not consist of a one-way street, its occurance is surely possible.

The chosen way combines the IDs of the connected junctions with an offset

of 100 (the simulation has a maximum of 72 junctions), ensuring the smaller

ID always to be the shifted one. Another perl program (calc.pl) had to

convert the FleetNet simulation files for the simulator which uses OTcl code

as input. The nodes (car IDs) were sorted and renumbered to start with 0

and the position information needed to be transformed so that the layout

began with the origin.

As it is vital for MIRP to know which node is in which map state, either

street or junction (master or slave is decided by the protocol dynamically),

the distance of every node to every junction was compared. The chosen

junction radius, i.e. the distance in which a node is counted as junction

member), is of great importance, since it defines the number of possible

contestants to be junction master. If the value of this variable is chosen too

small some junctions may be vacant for a longer period of time, disabling

any packet routing across it. If on the other hand this variable is set too

high many nodes rival to become master, which could result in a higher

collision probability, as well as there are less street nodes to relay the packet

and finally, the special case of a junction slave receiving a packet while the

master is out of range has a higher probability. Worst of all is the effect that

the possible master’s distance from the junction’s centre could be so great

that the master is unsuitable to act as a relaying station.

Another factor is the sojourn time of the nodes as members of the junc-

tion. A larger value in the radius of the junction directly results in a higher

period of association. Although this effect is small, it might result in less

junction databases to be transmitted. The calc.pl programme therefore

calculates the maximum as well as the median sojourn time of all nodes.

A statistics of the average number of nodes being junction members is to

4.1. NS-2 35

be prepared. For each node its activation period is processed, i.e. the time

during which it takes part in packet handling and with the aid of the node

positions at every second the median velocities for all nodes for each interval

are calculated, as these data are needed by ns-2 for the node-movement files.

Every node’s starting location is set in the scenario file, which furthermore

contains a new destination position in x/y coordinates with the calculated

velocity in discrete time intervals of one second. Every five seconds this is

extended by the coordinates from the FleetNet simulation file to minimize

deviation from the source.

The second file created is the active pattern file which contains the com-

mandlines to change the nodes’ active states, triggered by the run.tcl

file. The nodes’ active times are also stored in a special nodes-fs-

filenumber_onoff.txt file which is evaluated by the miro.pl program to

find random communication partners. Every time a node enters or leaves a

junction is stored in the mem-fs-filenumber.tcl file. The exact times have

previously been calculated on the basis of the discrete velocities to get exact

entry and exit times. This preparation of the scenario file (setup and move-

ment of nodes) and the active pattern file only needs to be done once.

Here are some snippets of the 3 files:

A movement entry in the sc-61.tcl file looks like this:

$node_(0) set X_ 2890.0000

$node_(0) set Y_ 4334.0000

$ns_ at 0.0002 "$node_(0) setdest 2881 4337 9.48683"

$ns_ at 1.00000 "$node_(0) setdest 2866 4342 15.81139"

The first and second line place the node in the simulator at position 2890x /

4334y. The third line gives the node an initial direction towards the position

2881/4337 and speed of 9.48683 metres per second, about 34 km/h. The last

entry refreshes this directional guideline.

$ns_ at 0 "changeActiveState 0 0"

$ns_ at 0.0001 "changeActiveState 0 1"

$ns_ at 11.9999 "changeActiveState 0 0"

36 CHAPTER 4. THE NETWORK SIMULATION ENVIRONMENT

This is an extract from the on off-61.tcl file, representing the activity

mapping. The first line is the initialization of the node 0 with 0, i.e. switch-

ing it off, followed by the reactivation in line two. Node 0 takes part in the

simulation right from the start. Line 3 shows the deactivation of node 0 at

the timestamp of 11.9999. From this point onward the nodes do not take

part in any more communication in the simulation.

As all occurrences have to be scheduled in the simulator, Christian Lochert

took 0.0001 as the increment until the node status was set, 0.0002 for the

movement entry and I selected 0.00015 as the increment for the map infor-

mation setting, just before the movement is triggered. The following lines are

from the file cp-mem-61-0.25.tcl. It is a merged file from the comunication

pattern file, its generation will be explained next, and the membership of the

nodes as calculated by the calc.pl program.

$ns_ at 0.00015 "[$node_(0) set ragent_] junc-member 43"

$ns_ at 0.73787 "[$node_(0) set ragent_] street-member 4346"

The first line informs node 0 that it is member of junction 43 from this time

onward. From the second line it can be deduced that node 0 changes to the

street 4346 at the timestamp 0.73787. It moves for about 11.2 seconds on

this street in the direction of junction 46. This member file is now extended

by a leading communication pattern.

4.1.4 The MIRO Perl Program

This communication pattern is calculated by the miro.pl 1file. It manages

all variable simulation parameters, for example the interval at which the

CBR packets are transmitted by their sources. Either a single interval can

be assigned by the command line, or the array in the beginning of the file can

be edited to accomplish different automated runs with these preset intervals.

Other parameters are the number of runs to be performed, the different

routines to process the output tracefile or the number of nodes taking part

1As this is the last step before the MIRP computation miro was chosen as the letter o
is the direct predecessor of the letter p

4.1. NS-2 37

in the communication. Certain timeslots where communication should take

place or be interrupted can also be assigned in the preset array at the begin-

ning of the perl file.

The possible usage of the NULL-MAC is also implemented and can be trig-

gered via the command line. The NULL-MAC is an implementation by

Michael Käsemann in which all packet deliveries are simulated to be trans-

ported through wired channels, i.e. undisturbed delivery is assured.

38 CHAPTER 4. THE NETWORK SIMULATION ENVIRONMENT

Chapter 5

Implementation of MIRP in

ns-2

After the preparations to set up a routing agent which have been explained

earlier have been finished, the possible approach to an implementation has

to be sophisticated. Somehow the mobile nodes in the simulation have to be

alerted to a change in their map status. The three predefined states, which

have been introduced before, are street node (1), junction node being slave

(0) and junction node being master (2).

5.1 General Operations Director (GOD)

The ns-2 network simulator provides means to inform the nodes whenever

they enter or leave a junction. GOD is a unique object in the ns-2 hierarchy.

It may only run in a single instance and is thereby perfect for all simulation

specific operations. GOD will be used to signal the nodes of their map

status changes and inform a querying node of the positional information of

itself and acting as omniscient location service distributing the coordinates

of a requested destination node. Apart from the geographical information

the MIRP algorithm needs some knowledge about the map. The nodes need

layout information of the streets and junctions.

For this purpose a database has been built up containing the map based

39

40 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

neighbourhood information listed below. Starting with the junction IDs,

each junction entry looks like this:

junction ID X Y connected street ID leading to junc. ID X Y

Any additional street - junction pairs are simply appended. For eas-

ier access each entry is 4 digits long with a blank in between.

The street entries follow after the last junction entry. All street entries have

a fixed length of 7. Their IDs are by setup all greater than 100 and are

arranged in the following order:

street ID junction ID X Y second junction ID X Y

This MDB.txt file is read by a function implemented in GOD during the

setup process of the simulation. The database is stored in arrays, these

are accessed with a street or junction ID named Map ID (MID) in god.cc

which returns the corresponding data (in form of a pointer), the first entry

MDB[MID][0] containing the number of entries (for every MID >100 this [0]

== 6, as it belongs to a street). The junction entries consist of 6 + (x *

4) entries, x being any extra trailing street. This grants all mobile nodes

access to the map-based information.

An example is a street node receiving data packets from a connected CBR

Agent. Thus the street node needs to know the IDs of the junctions con-

nected to the street it is moving on as well as the corresponding coordinates

to be able to calculate the distances of each junction to the destination the

CBR packets need to be routed to. The junction closer to the destination is

the logical first choice.

5.1. GENERAL OPERATIONS DIRECTOR (GOD) 41

void MIRPAgent::genlaunchDpkt(Packet *p) {

int* DBptr;

hdr_ip *iph = hdr_ip::access(p);

hdr_cmn *cmnh = hdr_cmn::access(p);

hdr_mirp *mirph = hdr_mirp::access(p);

\\ getting x,y coordinates of the destination node

mn_ = God::instance()->nodelist[mirph->dst.id];

mn_->getLoc(&mirph->dst.x,&mirph->dst.y,&mirph->dst.z);

mn_ = God::instance()->nodelist[mirph->src.id];

DBptr = God::instance()->getDBentry(mid);

int items = DBptr[0]; // entry point to the junction database

junc_info dsta, dstb;

int ja,jb, jx;

double disA, disB;

if (ms_ == 2){ // the master queries his junction DB

findJdst(p); // check JDBv to find a suitable junctiondst

pdr.sent ++; // allow a simple pdr output at sim end

return;

}

else if (mid < 100) { // node is in junction(slave)

// send to its master (better knowledge!)

mirph->pmdst_ = mid;

}

else { // node is on street find junction closer to dest

ja = DBptr[1];

jb = DBptr[4];

dsta.id = ja;

dsta.x = DBptr[2];

dsta.y = DBptr[3];

dstb.id = jb;

dstb.x = DBptr[5];

dstb.y = DBptr[6];

42 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

disA = Distance(mirph->dst, dsta);

disB = Distance(mirph->dst, dstb);

if (disA < disB) {

mirph->pmdst_ = ja;

} else {

mirph->pmdst_ = jb;

}

}

iph->sport() = RT_PORT;

iph->dport() = RT_PORT;

cmnh->next_hop_ = MAC_BROADCAST;

cmnh->direction() = hdr_cmn::DOWN;

double aj = MIRP_JITTER;

Scheduler::instance().schedule(target_,p,aj);

pdr.sent ++;

// Remember the Packet as processed

struct seqnoentry tmpfrw = {

cmnh->uid(), Scheduler::instance().clock(), cmnh->uid()

};

processingcache->add(&tmpfrw);

return;

}

5.2. THE MIRP HEADER 43

Figure 5.1: ns-2 Header Assembly

5.2 The MIRP Header

After the implementation of the street and junction database has been ex-

plained, it is important to understand the different header fields MIRP uses.

As this figure from the ns-2 documentation shows the header size of all pack-

ets is calculated during simulation configuration time. The simulater is told

to remove all possible header fields in order to reduce overhead and is then

configured with only the few header fields needed for a certain simulation.

44 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

5.2.1 Packet Types

The MIRP header itself consists of several possible types of packets which

are listed below for a better survey:

ID MIRP Header Fields

0 MIRP DATA Standard Data Packet

1 MIRP LSREQ Link State Request (M to Link)

2 MIRP LSREP Link State Reply (M to Link)

3 MIRP MatJ Propagating present Master at Junction

(M to Junction)

4 MIRP LMADV Leaving Master Advertisement

(M to new M / M broadcast)

5 MIRP LMACK L M Acknowledge

(new M to leaving M broadcast!)

6 MIRP LMXP L M Exchange Packet

(leaving M unicast to new M)

7 MIRP RADV Receive Advertisement

(Destination to contenders)

8 MIRP PMRP Present Master Recall Packet

(MwDB to nM (pert S))

0 MIRP_DATA Data Packets - This type contains only agent originated pack-

ets. They are routed partly by the source node, which chooses the first

master for further relaying of the packet. The main routing is then done

by the master nodes in the junctions, until finally the packet reaches

the street or junction the destination node resides in. Data packets

can be considered as awareness packets if relayed by a master. Only

a master sets the pmsrc_ entry in the header field to signal that and

where this packet was touched by a master. Any receiving slave node

in the same junction as pmsrc_, the masters junction, reschedules the

MatJTimer.

1 MIRP_LSREQ Link state request packets are only sent by the masters re-

5.2. THE MIRP HEADER 45

siding in the junction. They are set to a certain link (street) by the

pmi (packet map information) field. Their job is to detect the state of

the link and trigger a link state reply packet if reaching the opposite

junction. Link state requests are awareness packets due to the usage

of the pmsrc_ field.

2 MIRP_LSREP Link state reply packets are direct answers to link state re-

quest packets sent from the receiving master. They contain the junc-

tion database entries stored in the jdbv vector database. Entries with

a path length equal to the maximum path length are not included,

since these would be ignored at the receiving destination due to excess

length. Because the pmsrc_ header field is used to indicate the source

junction of the link state reply, the packet is an awareness packet to

surrounding slaves.

3 MIRP_MatJ Master at Junction type packets are the original awareness

packets for the slaves residing in the junctions. This packet type is

triggered in a fixed interval after the last other packet which indicates

the master’s presence has been transmitted.

4 MIRP_LMADV Leaving Master Advertisement packets are transmitted by

a junction master, which has just been informed from OTcl that the

node is now a street member. The intention is to perform the handover

of the junction database which the old master is still carrying to the

new master. The residing slaves therefore contend with each other,

initiating a timer with the delay corresponding to their sojourn time

so far. This method has been chosen as the probability is higher that

a newly arrived slave has a longer future sojourn than an older one.

5 MIRP_LMACK The Leaving Master Acknowledge packet is sent by the slave

node which has won the contention and has therefore had the smallest

sojourn time. It is a broadcast transmission to inform all other con-

tenders of the end of competition and the new master at the junction.

6 MIRP_LMXP The Leaving Master Exchange packet finally is a unicast packet

46 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

containing the junction database routing table entries. It is trans-

mitted from the old master to the new master upon receiving of the

MIRP_LMACK packet.

7 MIRP_RADV Receive Advertisement packets are in general the confirmation

packets of the last hop at a contention/suppression queue. Because this

last hop receipt has not been made aware, either due to a destination

reached or a master node picking a new link for further propagation, the

MIRP_RADV packet is broadcasted. All nodes who are still contending

will now end their running timers and drop the packets.

8 MIRP_PMRP The Present Master Recall Packet is an effort to subdue any

pert slave nodes which have been unable to register the master’s pres-

ence owing to packet collisions. As described above, this part is not

an easy task. Several attempts have been initiated to prevent the old

master from sending lots of these MIRP_PMRP packets, one for every

awareness packet, which can quickly sum up to a decent amount. Due

to the many tasks a new master has to do it is virtually impossible

to get its attention. Sending a packet unicast to the master probably

results in a packet collision, triggering a retry soon. A preventative

measure was the embedding of the junction node master’s timestamp

(the time since it became master) into the MIRP_MatJ packet. Any pert

slave which became master could detect its inadequacy this way and

step down, leaving the older ones with the difficult task of informing

the active but newer master. That means a veteran master will not be

reduced but has problems informing the eager upstart to subdue.

5.2.2 Important MIRP Header fields

As some general packet header fields have already been introduced, the other

variables worth mentioning are the following:

MIRP TTL The range of the maximum hop count resembles the Time To

Live(TTL), which is a value decremented at each hop and compared

5.2. THE MIRP HEADER 47

to zero. If the hop count equals the TTL the packet is discarded. It is

not a real MIRP Header field, as it is taken from the IP header.

pid Packet ID used for certain return detections

src/dst/last These entries are all of the node_posinfo structure and like

these have a node ID of address type, x,y and z position as well as a

MID.

pmdst This field holds the packet map destination, which is the ID of a

destination junction.

pmsrc The packet map source field to the last entry, containing a junction

ID, too.

pmi The packet map information refers to the street ID on the city map.

pts The packet time stamp is used for transmission time calculations and

misused by the PMRP type to transport the master timestamps in

order to distinguish between the master age or valence.

jrte c The junction routing table entry count refers to the number of entries

contained in the jrte[].

jrte[] The junction routing table entry contains an array which is of the

structure lshe and consists of the junction ID, the path length, the

timestamp of the entry and the path in form of an array.

48 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

5.3 The MIRP Timers

Just before plotting the source code in UML form the timer handlers will be

explained.

MatJTimer The Master at Junction Timer is a timer concerning all junc-

tion nodes. At the instance of a junction-member OTcl trigger the

addressed node is initiating the MatJTimer with a delay named Master

at Junction Propagation Time MIRP_MatJ_PT. Its duration is composed

of a fixed value and a randomly chosen part. Every received awareness

packet triggers a reschedule of this timer for the slave. The master does

not reschedule the timer but every time it expires, it is reinitiated with

a fixed reduced delay to favour the master node.

LMNM Timer The Leaving Master New Master Timer is responsible for

selecting a new suitable master when the recent one moved on. Upon

hearing the MIRP_LMADV packet all contending slaves in the targeted

junction schedule this timer with a delay corresponding to their sojourn

time. The latest arrival wins the contest and broadcasts a MIRP_LMACK

packet.

LSRC Timer The Link State Refresh Cycle Timer is a timer born of the

attempt to reduce bandwidth usage. Formerly every MajJ Timer ex-

piry triggered an advertisement packet as well as a link state request

for each trailing street. The LSRC Timer in cooperation with the Link

State Flag Vector LSFV reduces this bandwidth usage. The LSFV re-

members each link which could not be confirmed to be up and after

a MatJTimer timeout only each unconfirmed link is queried by a new

link state request packet. The LSRC Timer ensures a forced link state

request for every street to receive a fresh MIRP LSREP packet containing

further pursued link states.

contentiontimer The contentiontimer postpones the sending of a packet

according to its delay. The handler is memorized to be able to delete

the packet if the contention has been won by someone else.

5.3. THE MIRP TIMERS 49

dataretrytimer The dataretrytimer delays a copy of the transmitted packet

until either a received confirmation causes the deletion of the copy via

the stored handle, or the copy is sent off as a retry upon expiry. A retry

counter is incremented till the value of the MIRP_MAX_RETRY_ATTEMPTS

has been reached.

50 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

Figure 5.2: UML-Class diagram

5.3. THE MIRP TIMERS 51

5.3.1 Data-Dictionary

Class:MIRPTimer

The MIRPTimer class is a queued timer. Two instances, contentiontimer and

dataretrytimer, belong to this class. Their tasks have just been explained.

attribute description

MIRPAgent *parent ; pointer to the MIRPAgent to which the timer

belongs

Class:MatJTimer, LMNM Timer, LSRC Timer

The MatJTimer, LMNM Timer and LSRC Timer classes inherit from

TimerHandler. Their sole function expire is triggered and hands over a

certain flag to identify the type of timeout in the corresponding timeout

function.

attribute description

MIRPAgent *a ; pointer to the MIRPAgent to which the timer

belongs

function description

void expire(Event *e) event handling, further details are given in time-

out function

Class:MIRPAgent

The class MIRPAgent is the main class of the agent. The most important

entries will be described below.

52 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

attribute description

vector <TaEn>jbdv; container for the junction database entries

vector <TaEn>lsfv; container for the link state flag vector

padera pdr; packet delivery analysis for possible output at

simulation end

int active ; node status (wake / sleep) flag - an inactive

node does not take part in the routing process

unsigned int pid ; the packet identifier for connections

double nts ; node time stamp at junction to calculate the

sojourn

double mts ; master time stamp at junction to decide which

master is older

int omi; old map info, i.e. the last map ID the node

came from

int mid; map ID i.e. the current map ID of the node

lately used for streets only

int ms ; the map status - a slave node has the value 0,

the street nodes value is 1 and the master uses

the 2

int sPMRP; sent present master recall packet - this flag is

only used to prevent the receiving master from

replying to every awareness packet, which a pert

master in his junction sent out and thus reduce

collisions

double dPMRP; delay present master recall packet - in combina-

tion it blocks the transmission of PMRP packets

for a certain amount of time

int packet send retries ; this retry value is set from the command line

and has a default entry

double

max forwarding delay ;

this delay value is set from the command line

and has a default entry

int use strict dupdetect ; this boolean value is set from the command line

and controls the handling of a duplicate detec-

tion

5.3. THE MIRP TIMERS 53

function description

int command(int argc,

const char* const* argv);

the command function represents the interface

to the OTcl environment. Apart from the ini-

tialization of the nodes and the padera trigger

for the packet delivery statistic in the end the

MIRPAgent mainly uses the street-member and

junc-member parts of the command function to

inform the nodes of a change in the MID, i.e.

when a node moves from street to junction or

vice versa

void wake(); this function wakes the node whenever the OTcl

procedure proc changeActiveState {nId on} is

called

void sleep(); this function puts the node to sleep when-

ever the OTcl procedure proc changeActiveState

{nId off} is called

void tap(const Packet*); this function taps the passing traffic and is used

by the MIRPAgent only to trigger a MIRP RADV

packet for each received packet destined for this

node

void init(); this is the initialization function which sets

most variables to starting values

void resume(Packet*) the resume function handles expired contention

or retry timer events. In case of a contention

packet the actual progress made is recalculated

void send(Packet*); the send function takes care of the relayed

packet from the resume function. It either dis-

cards the packet after checking the number of

retries used or relays the packet incrementing

the retry counter and memorizing the process-

ing of the packet

54 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

void timeout(int tno); the timeout function provides procedures if one

of the three timer handler expires. A MatJ

timeout leads to an immediately transmitted

MIRP_MatJ type packet to the junction ID the

node is member of. Thereafter link state pack-

ets are relayed to all connected links (this in-

formation is extracted from the Map Database

(MDB) GOD administers). The LSRC Timer

is started while the lsfv is filled with entries

for all existing adjacent streets and the MatJ-

Timer is rescheduled with a certain benefit. A

LMNM Timer timeout crowns the node to be new

master. A MIRP_LMACK packet is assembled and

dispatched. Finally the LSRC timeout triggers a

forced link state query of all connected streets

to accumulate new link state information of dis-

tant junctions. For this purpose the MatJ func-

tion is called and the LSRC Timer rescheduled.

void Streetchange(int); the Streetchange function cancels all pending

timers (the MatJTimer and in case of a master

node the LSRC Timer as well), hands over the

new MID, sets the map status (ms) and if the

node was a master it transmits a MIRP_LMADV

packet to the old junction ID and invalidates

the master timestamp (mts)

void Junchange(int); the Junchange function initializes the

MatJ Timer and the node timestamp (nts) and

sets the map status (ms) to slave (0)

void

recvLMADV(Packet *p);

the reception of a leaving master advertise-

ment reschedules the MatJTimer and starts the

LMNM Timer with a delay corresponding to

delay =
actualtime− junctionentrytime

100
(5.1)

5.3. THE MIRP TIMERS 55

void

recvLMXP(Packet *p);

the reception of a leaving master exchange

packet is always unicast from the old master.

The new master calls the getjuncDB function.

void

recvLMACK(Packet *p);

the receiving of a leaving master acknowledge

packet cancels the LMNM Timer that is pending

in every slave in this junction and prompts the

old master to generate a MIRP_LMXP packet con-

taining the junction database and transmit it

in unicast fashion to the sender of the LMACK

packet

void

recvMatJ(Packet *p);

the reception of a master at junction packet by

a slave in the junction causes the MatJTimer to

be rescheduled. A master receiving this kind of

packet becomes aware of another master in his

junction. As a reaction the master generates

a MIRP_PMRP packet, puts his mts in the pts

field of the header and transmits it to the origi-

nator of the MatJ packet as unicast. In the new

version of the MatJ packet the pts header field

correlates with the mts of the sender, thus be-

fore sending the MIRP_PMRP packet, the master

checks if the sender has an older timestamp and

is therefore more privileged foregoing the PMRP

transmission.

void

recvPMRP[Packet *p);

the arrival of a present master recall packet

prompts the receiving master (unicast) to com-

pare the own mts with the received mts from

the mirph->pts_ field. If the originating master

has a smaller timestamp he is the regular mas-

ter and the receiver will cancel the LSRC_Timer,

reschedule the MatJTimer and set the ms to

slave (0). If the receiver has an older timestamp

he will retransmit a MIRP_PMRP type packet via

unicast to the sender with his own mts in the

header.

56 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

void

sendRADV(const Packet *p);

this function is called by the tap function

upon discovery of a data packet reaching

the final destination. As the packet is con-

sumed a notification of the receipt has to

be transmitted to the sender and all pos-

sible contenders. This is done by the re-

ceive advertisement packet. It is a normal

broadcast packet and the MIRP header

packet ID entry is set to the packet ID

of the received common header.

void newMatJ(void); the new master at junction function sends

a link state request to all adjacent streets

void findJdst(Packet *p); the find junction destination function is

only invoked by a master. It searches the

master’s junction database for the junc-

tion entry which is closest to the coor-

dinates of the data packet’s destination.

The result is stored in the header and the

packet dispatched.

void getjuncDB(Packet *p); the get junction database routine is called

from the recvLMXP function. The receiv-

ing master reads all Junction Routing Ta-

ble Entries (JRTE) and stores them in the

newly created junction database.

void genlsreq(int link,

junc info const dstj, junc info

const srcj);

the generate link state request function is

a helping routine to the newMatJ func-

tion. It just creates link state requests for

the entries which have been handed over.

5.3. THE MIRP TIMERS 57

void

genlaunchDpkt(Packet *p);

the generate launch data packet function uses

a sort of omniloc by questioning GOD for the

positional information of the destination. If the

actual node is a slave, the packet is directed to

its junction master. If it is a master the func-

tion findJdst(p) is invoked and if the node is a

street node, the MDB is questioned and of the

two junctions at the ends of the street the one

closer to the destination is selected (by putting

the junction ID into the mirph->pmdst_s field)

and the packet is launched.

void

recv(Packet *p, Handler*);

The receive function is the main element of the

MIRPAgent. All incoming packets are intro-

duced here. The very first task is to verify the

right to take part in the communication and

analysis. If the node is not awake the packet

is dropped here. The next step is to access the

packet header entries. This is done by the fol-

lowing code:

struct hdr_mirp* mirph = HDR_MIRP(p);

struct hdr_ip* iph = HDR_IP(p);

struct hdr_cmn* cmnh = HDR_CMN(p);

The IP header source and destination address

are now stored and the common header trans-

mission failure fields evaluated with respect to

unicast one hop transmission errors. The first

check is for a newly arrived agent packet from

the upper layer. In the simulation a CBR agent

is generating the data traffic with a 100 bit

packet size. The CBR agent is connected to

an UDP agent which is relaying the packets

to a NULL agent connected at the destination

node.

58 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

void

recv(Packet *p, Handler*);

continued

Upon arrival of a new data packet the MIRP

header fields have to be initialized, the TTL in

the IP header field is set to the MIRP TTL which

is 32 at the moment. The mirph->src header

entries are filled with the mobile node address

as well as the MID and the routing port to the

UDP agent is stored in the appropriate field

mirph->origport. As this is unusual it will be

explained now. Normally the IP header desti-

nation port stays unchanged, which results in

a direct delivery to the UDP agent once the

packet reaches its destined location. The MIR-

PAgent at the destination node is not getting

access to this packet unless the tap is used. The

current implementation is a workaround en-

abling the MIRPAgent to completely renounce

any usage of the tap. The momentary usage to

trigger the MIRP_RADV packets in the tap func-

tion could likewise be done in the recv() func-

tion but is kept this way to show the feasibility.

Next the mirph->dst.id is filled with the

iph->daddr(), the MIRP packet ID is matched

with the common header unique ID, the packet

map information is set to match the MID of the

current node and the current simulation time

is stored into the MIRP header packet time

stamp mirph->pts_ field. Finally the packet is

handed over to the generate launch data packet

function genlaunchDpkt(p) which has already

been explained in detail.

The next action, done with the left over packet

possibilities, is to decrement the TTL and drop

any expired packets. Now the packet retries are

reset to 0 and a switch statement delivers most

of the packet types to special functions which

all have been explained earlier on.

5.3. THE MIRP TIMERS 59

void

recv(Packet *p, Handler*);

continued

The only routine not yet explained is the han-

dling of the MIRP_RADV packet reception which

is still inside the main receive function and will

now be discussed shortly. Upon arrival of a

MIRP_RADV packet the data retry timer and in

succession the contention timer will be searched

for an entry of the MIRP header pid which

is equivalent to the common header unique ID

(cmnh->uid()) of the data packet. Possible

contending entries are deleted and the packet

is marked as being processed.

At this point it is verified if the packet is a data-

packet and if it is destined for this node. In this

case a duplicate detection on the basis of the

common header uid is made. A possible dupli-

cate is discarded, otherwise the uid is added to

the received cache to detect trailing duplicates,

the pdr.recv counter is incremented and the

data packet dispatched to the UDP agent via

the IP destination port, the entry taken from

the mirph->origport field.

All remaining packets are either link state pack-

ets or data packets for a different destination

node.

ms == 1 Assuming the receiving node is a street node

the receive procedure drops every packet that

is not destined for the street ID the node is cur-

rently travelling upon. It is a simple match of

the MID with the mirph->pmi_ header field. If

the packet is not dropped the CBF contention

or suppression scheme begins. If the contention

timer for this packet ID is not pending a weight

calculation is made based on the distances of

the source to the destination, the node to the

source and the node to the destination.

60 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

void

recv(Packet *p, Handler*);

continued

If the node is a valid contender, which means it

makes positive progress in the direction of the

destination, the contention timer is activated

with the delay corresponding to the progress.

This has been explained earlier. In case a con-

tention timer is already running the receiving of

this packet indicates a better suited contender

has forwarded this packet. This results in a re-

moval of the uid from the contention timer,

an added entry of this value to the processing-

cache and a discard of the packet.

ms == 0 In case of the receiving node being a slave

the handling of the packet is rather short. If

the packet map destination (mirph->pmdst_)

matches the junction the slave resides in and

no contention timer active it is added to the

contention timer with the delay equal to the

diameter of the junction1 divided by the radio

range. Thus a possible master in the junction

is not disturbed in the relaying of the packet if

the slave’s distance would be a perfect match

and result in an instant transmission. If a con-

tention timer is active, the uid is removed

from the timer, remembered in the processing

cache and the packet dropped.

ms == 2 In the last case the node is master of the

junction. If the received packet is desti-

nated for a different junction, indicated by the

mirph->pmdst_ entry not matching the MID

of the node, the packet is discarded. If the

mirph->pmsrc_ field is matched by the MID

value, then the packet is originated from this

junction. If it is not from the master then

there is another master in the junction and a

MIRP_PMRP type packet is sent to the originator

in unicast fashion while the received packet is

dropped.

5.3. THE MIRP TIMERS 61

void

recv(Packet *p, Handler*);

continued

A variable delay to the sending of the PMRP has

been added to avoid increasing traffic. The re-

ceive function now switches according to the

packet type:

LSREQ A link state request renews or adds an entry

for the originating junction (mirph->pmscr_)

to the junction database the master is fostering.

Additionally the receiving master generates a

link state reply containing all junction database

entries of valid length2 which do not contain a

path entry equal to the connecting street (link).

LSREP A link state reply results in an update of the

jdbv for the one hop link, too. Furthermore all

entries from the received reply are evaluated

and the junction database is updated accord-

ingly.

DATA The final possibility is the reception of a data

packet. After verifying if the packet is from a

surrounding junction (master) a one hop link

state update can be made if true, otherwise

the packet is from a street node or a slave. Af-

ter the last hop and successor information have

been updated in the header fields the packet is

handed over to the findJdst() function for fur-

ther handling.

62 CHAPTER 5. IMPLEMENTATION OF MIRP IN NS-2

Chapter 6

Results

6.1 Node placement

In the execution of the simulation only a certain part1 of the scenario layout

has been used. The FleetNet simulation file number 61, which has been

used by Christian Lochert previously contains only node movement data for

this small part of the map layout. It has been recently discovered that two

different simulation scales from Daimler Chrysler existed and unfortunately

the results could therefore not qualitatively be compared. My scenario data

consisted of 348 different vehicular nodes. To visualize the movement a plot

has been assembled picturing all nodes during every second of the simulation.

The small green line in the centre of the plot indicates the existence of an

unused street. Either no traffic in the specific time period from 16:00:00 -

16:00:59 was measured on this street or it has been later removed from the

files. In any case it has no influence on the simulation due to the length of

the street. If a master node in junction number 39, which is the left end of

the street, would send a link state packet the master in junction 40, being

the right end of the green line, would receive the transmission in one direct

hop, and the answer would be transmit in the same way. The plot suggests

a completely covered simulation layout, but taking a closer look a different

situation is shown:

1as denoted in figure 6.1 by the slashed line

63

64 CHAPTER 6. RESULTS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000

Figure 6.1: Visualization of the simulation area

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 2600 2800 3000 3200 3400 3600 3800 4000

Y
 ra

ng
e

X range

all nodes t0-60

Figure 6.2: Location of all nodes from file 61 at each of the 60 seconds

6.1. NODE PLACEMENT 65

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 2600 2800 3000 3200 3400 3600 3800 4000

Y
 ra

ng
e

X range

all nodes at t0
comunicating nodes at t0

Figure 6.3: Location of all nodes from file 61 at t=0

In this figure only the active nodes at the very beginning of the simulation

are plotted. The nodes are partly scattered and especially on the bottom

roads the distance between some of them is larger than a normal radio range

in the ns-2 simulation, which is 250 metres. All communicating nodes have

a distance of 1000 metres (±20 metres). The packets are generated at an

interval of 0.25, which is equal to 4 packets in a second, resulting in 100

packets send per communicating pair of nodes. As the first communication

pattern is set to have a communication period from second 2 till the 27th

second and a second communication time from the 30th second onward until

the 55th second of the simulation the node layout at the starting of the

second data transfer is shown, too.

The node layout here is not showing a better distribution, it is in some

parts even worse. As my predecessor has decided to increase the radio range

to 500 metres most of my simulations ran with this range too. The measure-

ments of wireless transmissions in the real world even transported packets

over a distance of 800 metres with success.

66 CHAPTER 6. RESULTS

 3500

 3600

 3700

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 4500

 4600

 2600 2800 3000 3200 3400 3600 3800 4000

Y
 ra

ng
e

X range

all nodes at t30
comunicating nodes at t30

Figure 6.4: Location of all nodes from file 61 at t=30

6.2 Simulation results

6.2.1 Packet delivery ratio

The simulation results were rather varying. The following plot shows the

latest results with a radio range of 500 metres, except for the first plot,

which is simulated for 250 metres. The communicating nodes have been

marked in the plot to the reader’s notice. It can be seen that the packet

delivery is between 35 and 60 % depending on the communicating nodes. On

the other hand a distinct difference in the two transmissions can be observed,

especially in the first, the 250 metres radio range transmission. This is due

to the street links the packets use for the different destinations as well as

another problem which will be discussed shortly. To analyse these results

further a comunication between nodes across the bottom area has been set

up and is shown in figure 6.6. The results for the communication of node 225

with 136 are shown in figure 6.7. To be able to better evaluate these results

other simulations using the NULL MAC have been made.

6.2. SIMULATION RESULTS 67

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

40 -> 126
227 -> 146

Figure 6.5: Packet delivery ratios

 3500

 3600

 3700

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 4500

 4600

 2600 2800 3000 3200 3400 3600 3800 4000

Y
 ra

ng
e

X range

all nodes at t30
communicating nodes at t30 b

Figure 6.6: Sparsely populated link

68 CHAPTER 6. RESULTS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

40 -> 126
255 -> 136

Figure 6.7: Packet delivery for node 225 to 136

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

40 -> 126
227 -> 146

Figure 6.8: PDR data with/without NULL MAC usage

6.2. SIMULATION RESULTS 69

The last pair of plots (5+6) represents a radio range of 250 metres again.

From these plots can be deduced that the main problem is a drop of pack-

ets due to occurring collisions. The range difference does not seem to have

any effects on the delivery ratio. The NULL MAC simulations indicate good

working of the routing decisions. It should be stated that no packet retry

is activated which significantly lessens the probability of a successfull trans-

mission. Unfortunately a stable version of one hop retry transmission could

not be finished. A junction to junction retry approach could be possible too,

relaying successfully transmitted packet IDs as well as neighbourhood link

state information in the header of data packets.

To verify the link state functionality and the exchange of the master

junction databases a small simulation layout had been created. Figure 6.9

shows the grid in the ad-hockey tool. The created communication pattern

and member file assigned each node at an intersection junction status, the

other nodes were set to street node status. The circle in the top left corner

displays the used radio range of 250 metres. After verifying the functionality

specific nodes were turned off to observe the reaction time of the master

databases. Promising results could be achieved, which leaves the question

why the results for the street scenario are so poor. Apart from the lack of

packet retry the struggling masters can have a major part in this.

70 CHAPTER 6. RESULTS

Figure 6.9: ad-hockey screenshot of grid.tcl layout

Chapter 7

Conclusion

7.1 Summary

This thesis presented the Map Information Routing Protocol, a new position-

based routing agent for city scenarios. The general description and setup of

the MIRP algorithm have been given, and some possible extensions intro-

duced. The Map Information Routing Protocol divides the partitioning nodes

in the simulation into destinct groups: Street nodes and junction nodes, the

latter consisting of slave and master nodes. This state is set depending on

the current position of the node in the map. Nodes inside a specific range

around the junction centre gain junction node status. The aim is to have a

single master residing in each junction channelling the traffic through ’his’

junction making the routing decisions on the basis of a table of link states.

This link state information is acquired by targeting special link state packets

to all surrounding junctions, their masters generating specific reply answer

packets. The street nodes perform only a basic contention based forwarding

of packets from one junction to the next but link specific. All packets received

for a different street are ignored. This way not only precise link states can be

discovered but also the running into a local minimum 1 can be avoided as the

responsible master should not route packets over a broken link2. The current

1as we are forwarding in greedy mode
2a dead end

71

72 CHAPTER 7. CONCLUSION

implementation of the MIRP algorithm suffers from packet collisions.

The main idea of MIRP, bringing the routing decisions into the junctions,

as superior knowledge of the topology could be accumulated there, also means

more transmissions around the junctions3. As the one hop range of the

junctions has increased traffic, part of it resulting from the control packets,

these areas can be seen as areas of increased packet collision probability.

If furthermore the radio range of the network devices is increased to 5004

metres and the different junctions in the city scenario are now in direct radio

range of each other, this probability is further increased. To conclude, the

results of the simulation MIRP has potential if the collision problem can be

eliminated. The main idea of gathering link state information in order to

avoid dead end situations is worth further research.

7.2 Future Research

If the problem of several masters in a junction is to be solved, a possible

approach could be an indirect switch in authority. Instead of broadcasting

a MIRP MatJ packet to claim the junction, a slave with an expired timer

for junction privileges could only initiate a master contention request for

the junction, evaluated by the mts . All residing masters would then enter

a forced contention period on the basis of their individual master times-

tamp, the longest residing master would win the contest and broadcast it’s

MIRP MatJ packet. If such a packet is not broadcasted after a certain period,

the slave itself becomes master and broadcasts the advertisement. The prob-

lem will lie in finding a suitable timespan especially with respect to the scale

of the possible master timestamps.

As the control attempts in master and slave handling were found to be

part of the bottleneck at the junctions exploring a different approach could

be worthwhile. Early simulations with no observation about the number

of masters actually residing in the junctions had not shown worse results

and could lead a way to a possible tradeoff: If every junction node collected

3caused in part by the different close range packets
4a doubled range and an even greater area growth

7.2. FUTURE RESEARCH 73

link state information passing by in an autarchic way, sending this link state

information by the collective in discrete time intervals means that far less

bandwidth would be needed. A possible transmission of a packet by a new

node in the junction, which has not yet collected much information would be

a negligible cost, a junction node without any knowledge would simply not take

part in the forwarding effort. The junction nodes could be handled similar

to the standard contention. The backoff timer should be a combination of

progress and the time at which the junction was entered by the node.

74 CHAPTER 7. CONCLUSION

Internet sources

http://www.fleetnet.de

FleetNet Project

http://www.isi.edu/nsnam/ns/tutorial/

Marc Greis’ Tutorial

http://nile.wpi.edu/NS/

Tutorial by Jae Chung and Mark Claypool

http://www.isi.edu/nsnam/ns/ns-documentation.html

ns-2 Documentation

http://inventors.about.com/library/inventors/bltelephone.htm

Alexander Graham Bell

75

76 CHAPTER 7. CONCLUSION

Bibliography

[1] S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile

ad hoc networks. Cluster Computing Journal, 5(2), 2002.

[2] C. L. Fullmer and J. J. Garcia-Luna-Aceves. Floor Acquisition Multi-

ple Access (FAMA) for Packet-Radio Networks. In Proceedings of the

conference on Applications, technologies, architectures, and protocols for

computer communication (SIGCOMM ’95), pages 262–273, Cambridge,

MA, August 1995.

[3] H. Füßler, H. Hartenstein, J. Widmer, M. Mauve, and W. Effelsberg.

Contention-Based Forwarding for Street Scenarios. In 1st International

Workshop on Intelligent Transportation, pages 155–159, Hamburg, Ger-

many, March 2004.

[4] H. Füßler, M. Mauve, H. Hartenstein, M. Käsemann, and D. Vollmer. A

Comparison of Routing Strategies for Vehicular Ad Hoc Networks. Tech-

nical Report TR-02-003, Department of Computer Science, University

of Mannheim, July 2002.

[5] H. Füßler, M. Mauve, H. Hartenstein, M. Käsemann, and D. Vollmer.

Poster: Location-Based Routing for Vehicular Ad-Hoc Networks. In

Proceedings of the eigth annual ACM/IEEE International Conference

on Mobile computing and networking (MobiCom ’02), Atlanta, Georgia,

September 2002.

77

78 BIBLIOGRAPHY

[6] H. Füßler, J. Widmer, M. Käsemann, M. Mauve, and H. Hartenstein.

Contention-Based Forwarding for Mobile Ad-Hoc Networks. Elsevier’s

Ad Hoc Networks, 1(4):351–369, 2003.

[7] B. N. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing

for Wireless Networks. In Proceedings of the sixth annual ACM/IEEE

International Conference on Mobile computing and networking (Mobi-

Com ’00), pages 243–254, Boston, Massachusetts, August 2000.

[8] M. Käsemann. Beaconless Position-Based Routing for Mobile Ad-Hoc

Networks. Master’s thesis, Department of Mathematics and Computer

Science, University of Mannheim, February 2003.

[9] W. Kieß. Hierarchical Location Service for Mobile Ad-hoc Net-

works. Master’s thesis, Department of Computer Science, University

of Mannheim, 2003.

[10] C. Lochert, H. Hartenstein, J. Tian, H. Füßler, D. Herrmann, and

M. Mauve. A Routing Strategy for Vehicular Ad Hoc Networks in

City Environments. In Proc. of IEEE Intelligent Vehicles Symposium

(IV2003), pages 156–161, Columbus, OH, June 2003.

[11] C. E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV). In Proceedings of the conference on

Communications architectures, protocols and applications (SIGCOMM

’94), London, United Kingdom, August 1994.

[12] C. E. Perkins and E. M. Royer. Ad-Hoc On-Demand Distance Vector

Routing. In Proceedings of the 2nd IEEE Workshop on Mobile Comput-

ing Systems and Applications (WMCSA), pages 90–100, New Orleans,

LA, February 1999.

[13] J. Raju and J. J. Garcia-Luna-Aceves. Scenario-based Comparison of

Source-Tracing and Dynamic Source Routing Protocols for Ad Hoc Net-

works. Computer Communication Review, 31(5):70–81, October 2001.

BIBLIOGRAPHY 79

[14] C. Tschudin, H. Lundgren, and E. Nordström. Embedding MANETs

in the Real World. In Proceedings of the IFIP-TC6 8th International

Conference on Personal Wireless Communications (PWC ’03), pages

578–589, Venice, Italy, September 2003.

